Data Anonymization and Pseudonymization Tools
Data Anonymization and Pseudonymization Tools
Proper anonymization requires more than just removing names. Tools for data anonymization help implement k-anonymity, l-diversity, and t-closeness. These tools analyze datasets for re-identification risks and apply appropriate transformations to protect individual privacy while maintaining data utility.
ARX is a comprehensive data anonymization tool providing a GUI and API for implementing various privacy models. It includes risk analysis, data quality metrics, and transformation suggestions. For Python users, libraries like anonymizedf
and cape-privacy
provide programmatic anonymization capabilities.
# Using cape-privacy for data anonymization
from cape_privacy import pandas as cape_pd
import pandas as pd
class DataAnonymizer:
def __init__(self):
self.policy = self.create_anonymization_policy()
def create_anonymization_policy(self):
"""Define anonymization rules"""
return cape_pd.policy.Policy(
label="user_data_anonymization",
rules=[
# Generalize age to ranges
cape_pd.GeneralizationRule(
column="age",
bins=[0, 18, 25, 35, 45, 55, 65, 100],
labels=["<18", "18-24", "25-34", "35-44", "45-54", "55-64", "65+"]
),
# Round coordinates to reduce precision
cape_pd.NumericPerturbationRule(
column="latitude",
min_=-0.01,
max_=0.01
),
cape_pd.NumericPerturbationRule(
column="longitude",
min_=-0.01,
max_=0.01
),
# Hash email addresses
cape_pd.ReversibleTokenizationRule(
column="email",
key="secret_key_for_tokenization"
),
# Redact sensitive fields
cape_pd.RedactionRule(
column="ssn"
),
# Generalize timestamps
cape_pd.DateTruncationRule(
column="created_at",
frequency="week"
),
# K-anonymity for quasi-identifiers
cape_pd.KAnonymityRule(
quasi_identifiers=["age_range", "zipcode", "gender"],
k=5
)
]
)
def anonymize_dataset(self, df):
"""Apply anonymization policy to dataset"""
# Apply policy
anonymized_df = self.policy.apply(df)
# Verify k-anonymity
if not self.verify_k_anonymity(anonymized_df, k=5):
# Apply additional generalization if needed
anonymized_df = self.increase_generalization(anonymized_df)
return anonymized_df
def verify_k_anonymity(self, df, k=5):
"""Check if dataset satisfies k-anonymity"""
quasi_identifiers = ["age_range", "zipcode", "gender"]
groups = df.groupby(quasi_identifiers).size()
return all(count >= k for count in groups)