Performance Optimization Strategies

Performance Optimization Strategies

Optimize scanning performance for large-scale deployments:

#!/usr/bin/env python3
# performance-optimizer.py

import os
import multiprocessing
import asyncio
from concurrent.futures import ThreadPoolExecutor, ProcessPoolExecutor
import redis
import hashlib
import json
from typing import Dict, List, Optional

class ScanningOptimizer:
    def __init__(self):
        self.redis_client = redis.Redis(
            host='localhost', 
            port=6379, 
            decode_responses=True
        )
        self.cache_ttl = 3600  # 1 hour
        
    def optimize_scanning_strategy(self, images: List[str]) -> Dict:
        """Determine optimal scanning strategy based on workload"""
        
        strategy = {
            'parallelism': self.calculate_optimal_parallelism(len(images)),
            'caching_strategy': self.determine_caching_strategy(images),
            'scan_order': self.prioritize_scan_order(images),
            'deduplication': self.identify_duplicate_layers(images)
        }
        
        return strategy
    
    def calculate_optimal_parallelism(self, image_count: int) -> int:
        """Calculate optimal parallel scanning threads"""
        cpu_count = multiprocessing.cpu_count()
        memory_gb = os.sysconf('SC_PAGE_SIZE') * os.sysconf('SC_PHYS_PAGES') / (1024**3)
        
        # Each scan typically uses ~500MB memory
        memory_constrained_parallelism = int(memory_gb / 0.5)
        
        # CPU-constrained parallelism
        cpu_constrained_parallelism = cpu_count * 2
        
        # Image count constraint
        image_constrained_parallelism = min(image_count, 20)
        
        return min(
            memory_constrained_parallelism,
            cpu_constrained_parallelism,
            image_constrained_parallelism
        )
    
    def determine_caching_strategy(self, images: List[str]) -> Dict:
        """Determine optimal caching strategy"""
        
        # Analyze image patterns
        base_images = {}
        for image in images:
            base = image.split(':')[0]
            base_images[base] = base_images.get(base, 0) + 1
        
        # High reuse = aggressive caching
        reuse_factor = sum(count > 1 for count in base_images.values()) / len(base_images)
        
        return {
            'cache_scan_results': reuse_factor > 0.3,
            'cache_vulnerability_db': True,
            'cache_layer_analysis': reuse_factor > 0.5,
            'distributed_cache': len(images) > 100
        }
    
    def prioritize_scan_order(self, images: List[str]) -> List[str]:
        """Prioritize scanning order for optimal performance"""
        
        priorities = []
        
        for image in images:
            priority_score = 0
            
            # Production images first
            if 'prod' in image or 'production' in image:
                priority_score += 100
                
            # Frequently updated images
            update_frequency = self.get_update_frequency(image)
            priority_score += update_frequency * 10
            
            # Large images last (they take longer)
            size = self.estimate_image_size(image)
            priority_score -= size / 1000000  # MB
            
            # Previously vulnerable images
            if self.has_previous_vulnerabilities(image):
                priority_score += 50
                
            priorities.append((image, priority_score))
        
        # Sort by priority descending
        priorities.sort(key=lambda x: x[1], reverse=True)
        
        return [image for image, _ in priorities]
    
    async def parallel_scan_with_caching(self, images: List[str]) -> List[Dict]:
        """Perform parallel scanning with intelligent caching"""
        
        strategy = self.optimize_scanning_strategy(images)
        
        # Create thread pool for I/O bound operations
        with ThreadPoolExecutor(max_workers=strategy['parallelism']) as executor:
            # Check cache first
            tasks = []
            for image in strategy['scan_order']:
                task = asyncio.create_task(self.scan_with_cache(image, executor))
                tasks.append(task)
            
            results = await asyncio.gather(*tasks)
            
        return results
    
    async def scan_with_cache(self, image: str, executor) -> Dict:
        """Scan image with caching layer"""
        
        # Generate cache key
        cache_key = f"scan:{hashlib.sha256(image.encode()).hexdigest()}"
        
        # Check cache
        cached_result = self.redis_client.get(cache_key)
        if cached_result:
            return json.loads(cached_result)
        
        # Perform scan
        loop = asyncio.get_event_loop()
        result = await loop.run_in_executor(executor, self.scan_image, image)
        
        # Cache result
        self.redis_client.setex(
            cache_key, 
            self.cache_ttl, 
            json.dumps(result)
        )
        
        return result
    
    def implement_layer_deduplication(self, images: List[str]) -> Dict:
        """Identify and deduplicate common layers across images"""
        
        layer_map = {}
        dedup_opportunities = []
        
        for image in images:
            layers = self.get_image_layers(image)
            
            for layer in layers:
                if layer in layer_map:
                    layer_map[layer].append(image)
                else:
                    layer_map[layer] = [image]
        
        # Identify layers that appear in multiple images
        for layer, images_with_layer in layer_map.items():
            if len(images_with_layer) > 1:
                dedup_opportunities.append({
                    'layer': layer,
                    'images': images_with_layer,
                    'scan_once': True
                })
        
        return {
            'total_layers': len(layer_map),
            'unique_layers': len([l for l, imgs in layer_map.items() if len(imgs) == 1]),
            'shared_layers': len(dedup_opportunities),
            'dedup_plan': dedup_opportunities
        }

# Distributed scanning orchestrator
class DistributedScanner:
    def __init__(self, worker_nodes: List[str]):
        self.worker_nodes = worker_nodes
        self.job_queue = redis.Redis(host='redis.queue.local')
        
    async def distribute_scanning_workload(self, images: List[str]) -> Dict:
        """Distribute scanning across multiple nodes"""
        
        # Partition images across workers
        partitions = self.partition_workload(images)
        
        # Submit jobs to workers
        job_ids = []
        for worker, image_batch in zip(self.worker_nodes, partitions):
            job_id = await self.submit_scan_job(worker, image_batch)
            job_ids.append(job_id)
        
        # Wait for completion and aggregate results
        results = await self.wait_and_aggregate_results(job_ids)
        
        return results
    
    def partition_workload(self, images: List[str]) -> List[List[str]]:
        """Intelligently partition workload across workers"""
        
        # Estimate scan time for each image
        image_weights = []
        for image in images:
            weight = self.estimate_scan_duration(image)
            image_weights.append((image, weight))
        
        # Sort by weight descending
        image_weights.sort(key=lambda x: x[1], reverse=True)
        
        # Distribute using bin packing algorithm
        partitions = [[] for _ in self.worker_nodes]
        partition_weights = [0] * len(self.worker_nodes)
        
        for image, weight in image_weights:
            # Add to partition with lowest current weight
            min_idx = partition_weights.index(min(partition_weights))
            partitions[min_idx].append(image)
            partition_weights[min_idx] += weight
        
        return partitions