Advanced Software Composition Analysis

Advanced Software Composition Analysis

Modern SCA tools go beyond simple vulnerability databases. They analyze dependency behavior, identify suspicious patterns, and predict future risks. Machine learning models trained on package history can identify dependencies likely to become abandoned or compromised. This predictive analysis helps teams make better dependency choices.

#!/usr/bin/env python3
# advanced_sca_analyzer.py - Advanced dependency analysis

import json
import requests
from datetime import datetime, timedelta
from typing import Dict, List, Any
import networkx as nx
from collections import defaultdict
import numpy as np
from sklearn.ensemble import RandomForestClassifier

class AdvancedDependencyAnalyzer:
    def __init__(self):
        self.vulnerability_db = VulnerabilityDatabase()
        self.package_metrics = PackageMetricsCollector()
        self.risk_model = self._load_risk_model()
        
    def analyze_dependency_tree(self, manifest_path: str) -> Dict[str, Any]:
        """Perform comprehensive dependency analysis"""
        # Build dependency graph
        dep_graph = self._build_dependency_graph(manifest_path)
        
        # Analyze each package
        package_risks = {}
        for package in dep_graph.nodes():
            risk_assessment = self._assess_package_risk(package)
            package_risks[package] = risk_assessment
        
        # Analyze dependency relationships
        relationship_risks = self._analyze_relationships(dep_graph)
        
        # Calculate aggregate risk metrics
        aggregate_metrics = self._calculate_aggregate_risk(
            package_risks, 
            relationship_risks
        )
        
        return {
            'package_risks': package_risks,
            'relationship_risks': relationship_risks,
            'aggregate_metrics': aggregate_metrics,
            'recommendations': self._generate_recommendations(package_risks)
        }
    
    def _assess_package_risk(self, package: str) -> Dict[str, Any]:
        """Comprehensive risk assessment for a package"""
        package_name, version = package.split('@')
        
        # Direct vulnerability assessment
        vulnerabilities = self.vulnerability_db.get_vulnerabilities(
            package_name, version
        )
        
        # Package health metrics
        health_metrics = self.package_metrics.collect_metrics(package_name)
        
        # Predictive risk scoring
        risk_features = self._extract_risk_features(health_metrics)
        predicted_risk = self.risk_model.predict_proba([risk_features])[0][1]
        
        # License compliance check
        license_risk = self._assess_license_risk(package_name)
        
        # Supply chain risk factors
        supply_chain_risk = self._assess_supply_chain_risk(package_name)
        
        return {
            'vulnerabilities': vulnerabilities,
            'health_score': self._calculate_health_score(health_metrics),
            'predicted_risk': predicted_risk,
            'license_risk': license_risk,
            'supply_chain_risk': supply_chain_risk,
            'overall_risk': self._calculate_overall_risk(
                vulnerabilities, predicted_risk, license_risk, supply_chain_risk
            )
        }
    
    def _analyze_relationships(self, dep_graph: nx.DiGraph) -> Dict[str, Any]:
        """Analyze dependency relationship risks"""
        risks = {
            'circular_dependencies': list(nx.simple_cycles(dep_graph)),
            'single_points_of_failure': self._find_critical_packages(dep_graph),
            'deep_dependency_chains': self._find_deep_chains(dep_graph),
            'version_conflicts': self._detect_version_conflicts(dep_graph)
        }
        
        # Calculate relationship complexity metrics
        risks['complexity_metrics'] = {
            'average_degree': np.mean([d for n, d in dep_graph.degree()]),
            'clustering_coefficient': nx.average_clustering(dep_graph.to_undirected()),
            'longest_path': len(nx.dag_longest_path(dep_graph))
        }
        
        return risks
    
    def _extract_risk_features(self, health_metrics: Dict) -> List[float]:
        """Extract features for risk prediction model"""
        features = [
            health_metrics.get('days_since_last_release', 999),
            health_metrics.get('monthly_downloads', 0),
            health_metrics.get('github_stars', 0),
            health_metrics.get('open_issues_count', 0),
            health_metrics.get('contributor_count', 0),
            health_metrics.get('commit_frequency', 0),
            health_metrics.get('has_security_policy', 0),
            health_metrics.get('uses_semver', 0),
            health_metrics.get('test_coverage', 0),
            health_metrics.get('documentation_score', 0)
        ]
        
        return features
    
    def _calculate_health_score(self, metrics: Dict) -> float:
        """Calculate overall package health score"""
        weights = {
            'maintenance_activity': 0.25,
            'community_size': 0.20,
            'code_quality': 0.20,
            'security_practices': 0.20,
            'documentation': 0.15
        }
        
        scores = {
            'maintenance_activity': self._score_maintenance(metrics),
            'community_size': self._score_community(metrics),
            'code_quality': self._score_quality(metrics),
            'security_practices': self._score_security(metrics),
            'documentation': self._score_documentation(metrics)
        }
        
        return sum(scores[k] * weights[k] for k in weights)

class DependencyPolicyEngine:
    """Policy engine for dependency management"""
    
    def __init__(self, policy_file: str):
        self.policies = self._load_policies(policy_file)
        
    def evaluate_dependencies(self, dependencies: List[Dict]) -> Dict[str, Any]:
        """Evaluate dependencies against policies"""
        violations = []
        warnings = []
        
        for dep in dependencies:
            for policy in self.policies:
                result = self._evaluate_policy(policy, dep)
                
                if result['violated']:
                    if policy['severity'] == 'error':
                        violations.append({
                            'dependency': dep['name'],
                            'policy': policy['name'],
                            'message': result['message']
                        })
                    else:
                        warnings.append({
                            'dependency': dep['name'],
                            'policy': policy['name'],
                            'message': result['message']
                        })
        
        return {
            'passed': len(violations) == 0,
            'violations': violations,
            'warnings': warnings
        }
    
    def _evaluate_policy(self, policy: Dict, dependency: Dict) -> Dict:
        """Evaluate single policy against dependency"""
        if policy['type'] == 'vulnerability':
            return self._check_vulnerability_policy(policy, dependency)
        elif policy['type'] == 'license':
            return self._check_license_policy(policy, dependency)
        elif policy['type'] == 'age':
            return self._check_age_policy(policy, dependency)
        elif policy['type'] == 'source':
            return self._check_source_policy(policy, dependency)
        else:
            return {'violated': False}

# Dependency update automation
class DependencyUpdateAutomation:
    """Automated dependency update management"""
    
    def __init__(self, repo_config: Dict):
        self.repo = repo_config
        self.update_strategies = {
            'security': SecurityFirstStrategy(),
            'conservative': ConservativeStrategy(),
            'aggressive': AggressiveStrategy()
        }
        
    def plan_updates(self, strategy: str = 'security') -> List[Dict]:
        """Plan dependency updates based on strategy"""
        current_deps = self._get_current_dependencies()
        available_updates = self._check_available_updates(current_deps)
        
        strategy_impl = self.update_strategies[strategy]
        update_plan = strategy_impl.plan(current_deps, available_updates)
        
        # Validate update plan
        validation_results = self._validate_update_plan(update_plan)
        
        return {
            'updates': update_plan,
            'validation': validation_results,
            'estimated_risk': self._estimate_update_risk(update_plan)
        }
    
    def execute_updates(self, update_plan: List[Dict], dry_run: bool = True):
        """Execute dependency updates with safety checks"""
        results = []
        
        for update in update_plan:
            if dry_run:
                result = self._simulate_update(update)
            else:
                result = self._perform_update(update)
            
            results.append(result)
            
            # Stop on critical failures
            if result['status'] == 'failed' and result['critical']:
                break
        
        return results