Implementing Continuous Verification

Implementing Continuous Verification

Continuous verification forms the heart of zero-trust architecture. Rather than authenticating once at session start, systems continuously evaluate trust levels based on user behavior, device health, and environmental factors. This dynamic approach can detect account takeovers, insider threats, and other attacks that bypass initial authentication.

Risk-based authentication adjusts security requirements based on real-time risk assessment. Low-risk activities might proceed with minimal friction, while high-risk operations trigger additional verification steps. Machine learning models analyze patterns to identify anomalous behavior that might indicate compromise. This adaptive approach balances security with usability by applying stronger controls only when needed.

# Example: Zero-trust data access system with continuous verification
import asyncio
import hashlib
import json
from datetime import datetime, timedelta
from typing import Dict, List, Optional, Tuple
from dataclasses import dataclass
from enum import Enum
import numpy as np
from cryptography.fernet import Fernet
import jwt

class TrustLevel(Enum):
    NONE = 0
    LOW = 1
    MEDIUM = 2
    HIGH = 3
    CRITICAL = 4

class RiskFactor(Enum):
    DEVICE_UNKNOWN = "device_unknown"
    LOCATION_UNUSUAL = "location_unusual"
    TIME_UNUSUAL = "time_unusual"
    BEHAVIOR_ANOMALY = "behavior_anomaly"
    FAILED_ATTEMPTS = "failed_attempts"
    PRIVILEGE_ESCALATION = "privilege_escalation"
    DATA_VOLUME_SPIKE = "data_volume_spike"

@dataclass
class AccessContext:
    user_id: str
    device_id: str
    ip_address: str
    location: Dict
    timestamp: datetime
    session_id: str
    authentication_methods: List[str]
    risk_factors: List[RiskFactor]
    trust_score: float

class ZeroTrustDataAccess:
    def __init__(self, config):
        self.config = config
        self.trust_evaluator = TrustEvaluator()
        self.behavior_analyzer = BehaviorAnalyzer()
        self.session_manager = SessionManager()
        self.data_store = SecureDataStore()
        self.audit_logger = AuditLogger()
        
    async def request_data_access(
        self,
        user_credentials: Dict,
        device_info: Dict,
        requested_data: str,
        operation: str
    ) -> Tuple[bool, Optional[Dict]]:
        """Process data access request with zero-trust verification"""
        
        # Create access context
        context = await self._build_access_context(
            user_credentials, device_info
        )
        
        # Initial authentication
        auth_result = await self._authenticate_user(
            user_credentials, context
        )
        if not auth_result.success:
            await self._log_failed_access(context, auth_result.reason)
            return False, None
        
        # Continuous trust evaluation
        trust_level = await self.trust_evaluator.evaluate(context)
        
        # Check if trust level meets data requirements
        required_trust = self._get_required_trust_level(
            requested_data, operation
        )
        
        if trust_level.value < required_trust.value:
            # Attempt to elevate trust through additional verification
            elevated = await self._elevate_trust_level(
                context, required_trust
            )
            if not elevated:
                await self._log_insufficient_trust(
                    context, trust_level, required_trust
                )
                return False, None
        
        # Apply data minimization
        minimized_data = await self._apply_data_minimization(
            requested_data, context, operation
        )
        
        # Create time-limited access token
        access_token = await self._create_access_token(
            context, minimized_data, operation
        )
        
        # Start continuous monitoring
        asyncio.create_task(
            self._monitor_session(context.session_id)
        )
        
        # Log successful access
        await self.audit_logger.log_access_granted(
            context, minimized_data, trust_level
        )
        
        return True, {
            'access_token': access_token,
            'data_scope': minimized_data['scope'],
            'expires_in': self.config['token_lifetime'],
            'monitoring_enabled': True
        }
    
    async def _authenticate_user(
        self,
        credentials: Dict,
        context: AccessContext
    ) -> AuthResult:
        """Multi-factor authentication with device verification"""
        
        # Password verification (if provided)
        if 'password' in credentials:
            if not await self._verify_password(
                context.user_id, credentials['password']
            ):
                return AuthResult(False, 'invalid_password')
        
        # Require MFA for all data access
        mfa_result = await self._verify_mfa(credentials, context)
        if not mfa_result.success:
            return mfa_result
        
        # Device trust verification
        device_trust = await self._verify_device_trust(
            context.device_id, context.user_id
        )
        if not device_trust.trusted:
            context.risk_factors.append(RiskFactor.DEVICE_UNKNOWN)
            if device_trust.blocked:
                return AuthResult(False, 'device_blocked')
        
        # Behavioral verification
        behavior_check = await self.behavior_analyzer.verify_behavior(
            context
        )
        if behavior_check.anomaly_score > self.config['anomaly_threshold']:
            context.risk_factors.append(RiskFactor.BEHAVIOR_ANOMALY)
            if behavior_check.high_risk:
                return AuthResult(False, 'behavioral_anomaly')
        
        return AuthResult(True, 'authenticated')
    
    async def _elevate_trust_level(
        self,
        context: AccessContext,
        required_level: TrustLevel
    ) -> bool:
        """Attempt to elevate trust through additional verification"""
        
        elevation_methods = {
            TrustLevel.MEDIUM: ['sms_verification', 'email_verification'],
            TrustLevel.HIGH: ['biometric', 'hardware_token'],
            TrustLevel.CRITICAL: ['in_person_verification', 'video_verification']
        }
        
        methods = elevation_methods.get(required_level, [])
        
        for method in methods:
            if await self._request_additional_verification(
                context, method
            ):
                # Re-evaluate trust level
                new_trust = await self.trust_evaluator.evaluate(context)
                if new_trust.value >= required_level.value:
                    return True
        
        return False
    
    async def _apply_data_minimization(
        self,
        requested_data: str,
        context: AccessContext,
        operation: str
    ) -> Dict:
        """Apply data minimization based on principle of least privilege"""
        
        # Get user's role and permissions
        user_role = await self._get_user_role(context.user_id)
        permissions = await self._get_role_permissions(user_role)
        
        # Determine minimum required data
        data_schema = self._get_data_schema(requested_data)
        required_fields = self._get_required_fields_for_operation(
            operation, data_schema
        )
        
        # Filter based on permissions
        allowed_fields = [
            field for field in required_fields
            if self._has_field_permission(permissions, field)
        ]
        
        # Apply additional restrictions based on context
        if RiskFactor.LOCATION_UNUSUAL in context.risk_factors:
            # Remove highly sensitive fields for unusual locations
            allowed_fields = [
                f for f in allowed_fields
                if not self._is_highly_sensitive(f)
            ]
        
        # Apply time-based restrictions
        if self._is_outside_business_hours(context.timestamp):
            allowed_fields = self._apply_time_restrictions(allowed_fields)
        
        return {
            'original_request': requested_data,
            'allowed_fields': allowed_fields,
            'excluded_fields': list(
                set(required_fields) - set(allowed_fields)
            ),
            'scope': self._calculate_data_scope(allowed_fields),
            'restrictions': self._get_applied_restrictions(context)
        }
    
    async def _monitor_session(self, session_id: str):
        """Continuous session monitoring for anomalies"""
        
        monitoring_interval = self.config['monitoring_interval']
        
        while await self.session_manager.is_active(session_id):
            session = await self.session_manager.get_session(session_id)
            if not session:
                break
            
            # Re-evaluate trust periodically
            current_trust = await self.trust_evaluator.evaluate(
                session.context
            )
            
            # Check for trust degradation
            if current_trust.value < session.initial_trust.value:
                await self._handle_trust_degradation(
                    session, current_trust
                )
            
            # Monitor data access patterns
            access_pattern = await self._analyze_access_pattern(session_id)
            if access_pattern.suspicious:
                await self._handle_suspicious_activity(
                    session, access_pattern
                )
            
            # Check session health
            if not await self._verify_session_health(session):
                await self._terminate_session(
                    session_id, 'health_check_failed'
                )
                break
            
            await asyncio.sleep(monitoring_interval)
    
    async def _handle_trust_degradation(
        self,
        session: Session,
        new_trust: TrustLevel
    ):
        """Handle degradation in trust level during session"""
        
        degradation_level = session.initial_trust.value - new_trust.value
        
        if degradation_level >= 2:
            # Severe degradation - terminate immediately
            await self._terminate_session(
                session.id, 'severe_trust_degradation'
            )
        elif degradation_level >= 1:
            # Moderate degradation - restrict access
            await self._restrict_session_access(session, new_trust)
            await self._request_reauthentication(session)
        else:
            # Minor degradation - increase monitoring
            await self._increase_monitoring_frequency(session)

class DataMinimizationEngine:
    """Engine for implementing data minimization principles"""
    
    def __init__(self, config):
        self.config = config
        self.schema_registry = SchemaRegistry()
        self.classification_engine = DataClassificationEngine()
        self.retention_manager = RetentionManager()
        
    async def minimize_stored_data(
        self,
        data: Dict,
        purpose: str,
        retention_period: Optional[int] = None
    ) -> Dict:
        """Minimize data before storage based on purpose"""
        
        # Classify data fields
        classification = await self.classification_engine.classify(data)
        
        # Determine required fields for purpose
        required_fields = self._get_required_fields(purpose)
        
        # Remove unnecessary fields
        minimized_data = {
            k: v for k, v in data.items()
            if k in required_fields or self._is_mandatory_field(k)
        }
        
        # Apply data transformation for privacy
        transformed_data = await self._apply_privacy_transforms(
            minimized_data, classification
        )
        
        # Set retention period
        if retention_period is None:
            retention_period = self._get_minimum_retention(
                purpose, classification
            )
        
        # Create minimization record
        minimization_record = {
            'original_fields': list(data.keys()),
            'retained_fields': list(transformed_data.keys()),
            'removed_fields': list(
                set(data.keys()) - set(transformed_data.keys())
            ),
            'purpose': purpose,
            'retention_days': retention_period,
            'minimization_date': datetime.utcnow().isoformat(),
            'techniques_applied': self._get_applied_techniques(
                data, transformed_data
            )
        }
        
        return {
            'data': transformed_data,
            'minimization_record': minimization_record,
            'retention_until': (
                datetime.utcnow() + timedelta(days=retention_period)
            ).isoformat()
        }
    
    async def _apply_privacy_transforms(
        self,
        data: Dict,
        classification: Dict
    ) -> Dict:
        """Apply privacy-preserving transformations"""
        
        transformed = {}
        
        for field, value in data.items():
            field_class = classification.get(field, 'general')
            
            if field_class == 'identifier':
                # Pseudonymize identifiers
                transformed[field] = await self._pseudonymize(value)
            elif field_class == 'quasi_identifier':
                # Generalize quasi-identifiers
                transformed[field] = self._generalize(field, value)
            elif field_class == 'sensitive':
                # Encrypt sensitive data
                transformed[field] = await self._encrypt_field(value)
            elif field_class == 'statistical':
                # Add noise for statistical data
                transformed[field] = self._add_differential_privacy(value)
            else:
                # Keep as-is for general data
                transformed[field] = value
        
        return transformed
    
    def _generalize(self, field: str, value: any) -> any:
        """Generalize data to reduce identification risk"""
        
        generalization_rules = {
            'age': lambda v: f"{(v // 5) * 5}-{(v // 5) * 5 + 4}",
            'zipcode': lambda v: v[:3] + "**",
            'ip_address': lambda v: '.'.join(v.split('.')[:2] + ['0', '0']),
            'timestamp': lambda v: v.replace(second=0, microsecond=0),
            'salary': lambda v: f"{(v // 10000) * 10000}-{(v // 10000 + 1) * 10000}"
        }
        
        if field in generalization_rules:
            return generalization_rules[field](value)
        
        return value
    
    async def implement_progressive_data_deletion(
        self,
        data_id: str,
        deletion_schedule: List[Dict]
    ):
        """Progressively delete data fields over time"""
        
        for stage in deletion_schedule:
            await self._schedule_deletion_stage(
                data_id,
                stage['fields'],
                stage['after_days']
            )
        
        # Create deletion audit trail
        await self.audit_logger.log_progressive_deletion(
            data_id, deletion_schedule
        )