Monitoring and Analytics for High-Traffic Firewalls
Monitoring and Analytics for High-Traffic Firewalls
Real-time monitoring becomes critical when handling millions of requests:
# High-performance metrics collection system
import asyncio
import time
from prometheus_client import Counter, Histogram, Gauge
import aiohttp
class FirewallMetricsCollector:
def __init__(self):
# Prometheus metrics
self.request_counter = Counter('firewall_requests_total',
'Total requests processed',
['action', 'protocol'])
self.request_duration = Histogram('firewall_processing_duration_seconds',
'Request processing duration')
self.active_connections = Gauge('firewall_active_connections',
'Currently active connections')
self.blocked_ips = Gauge('firewall_blocked_ips_total',
'Total IPs in blocklist')
async def collect_metrics(self):
"""Collect metrics from firewall systems"""
while True:
try:
# Collect from netfilter
conntrack_count = await self.get_conntrack_count()
self.active_connections.set(conntrack_count)
# Collect from ipset
blocked_count = await self.get_blocked_ip_count()
self.blocked_ips.set(blocked_count)
# Performance metrics
with self.request_duration.time():
await self.process_sample_request()
except Exception as e:
print(f"Metrics collection error: {e}")
await asyncio.sleep(10) # Collect every 10 seconds
async def stream_to_analytics(self):
"""Stream metrics to analytics platform"""
async with aiohttp.ClientSession() as session:
while True:
metrics = {
'timestamp': time.time(),
'connections': self.active_connections._value.get(),
'blocked_ips': self.blocked_ips._value.get(),
'request_rate': self.calculate_request_rate()
}
try:
async with session.post('https://analytics.example.com/metrics',
json=metrics) as response:
if response.status != 200:
print(f"Failed to send metrics: {response.status}")
except Exception as e:
print(f"Analytics error: {e}")
await asyncio.sleep(60) # Send every minute